skip to main content


Search for: All records

Creators/Authors contains: "Root, Samuel E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly.

     
    more » « less
    Free, publicly-accessible full text available June 2, 2024
  2. In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials—in this case, by leveraging membrane inversion and tube kinking—two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user’s fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design. 
    more » « less
  3. Abstract

    Traditional orthopedic casting strategies used in the treatment of fractured limbs, such as fiberglass and plaster‐based tapes, suffer from several drawbacks, including technically challenging molding for application, occurrence of skin complications, and the requirement of a potentially hazardous oscillatory saw for removal, which is frightening for pediatric patients. This work presents the design and evaluation of a foam‐fabric cast (FFC) to overcome these drawbacks by integrating strategies from soft materials engineering and functional apparel design. A fabric sleeve is designed to enable the reactive injection molding of a polymer foam and provide a form‐fitting orthopedic cast for the human forearm—with sufficient mechanical reinforcement to stabilize a fractured limb. Through testing with a replica limb and human subjects with a range of forearm volumes, the FFC application process is demonstrated and characterized. The thermal, pressural, chemical, and hygienic safety are comparable to or safer than existing clinical technologies. The FFC weighs only ≈150 g, is water resistant, and represents a robust alternative to traditional casts that can be i) manufactured at a large scale for a low cost; ii) applied to patients simply, rapidly (≈5 min), and reliably; and iii) removed easily with a pair of scissors.

     
    more » « less
  4. While the density is a central property of a polymer film, it can be difficult to measure in films with a thickness of ∼100 nm or less, where the structure of the interfaces and the confinement of the polymer chains may perturb the packing and dynamics of the polymers relative to the bulk. This Article demonstrates the use of magneto-Archimedes levitation (MagLev) to estimate the density of thin films of hydrophobic polymers ranging from ∼10 to 1000 nm in thickness by employing a substrate with a water-soluble sacrificial release layer to delaminate the films. We validate the performance of MagLev for this application in the ∼1 μm thickness range by comparing measurements of the densities of several different films of amorphous hydrophobic polymers with their bulk values of density. We apply the technique to films < 100 nm and observe that, in several polymers, there are substantial changes in the levitation height, corresponding to both increases and decreases in the apparent density of the film. These apparent changes in density are verified with a buoyancy control experiment in the absence of paramagnetic ions and magnetic fields. We measure the dependence of density upon thickness for two model polymeric films: poly(styrene) (PS) and poly(methyl methacrylate) (PMMA). We observe that, as the films are made thinner, PS increases in density while PMMA decreases in density and that both exhibit a sigmoidal dependence of density with thickness. Such changes in density with thickness of PS have been previously observed with reflectometric measurements (e.g., ellipsometry, X-ray reflectivity). The interpretation of these measurements, however, has been the subject of an ongoing debate. MagLev is also compatible with nontransparent, rough, heterogeneous polymeric films, which are extremely difficult to measure by alternative means. This technique could be useful to investigate the properties of thin films for coatings, electronic devices, and membrane-based separations and other uses of polymer films. 
    more » « less
  5. The control of pneumatically driven soft robots typically requires electronics. Microcontrollers are connected to power electronics that switch valves and pumps on and off. As a recent alternative, fluidic control methods have been introduced, in which soft digital logic gates permit multiple actuation states to be achieved in soft systems. Such systems have demonstrated autonomous behaviors without the use of electronics. However, fluidic controllers have required complex fabrication processes. To democratize the exploration of fluidic controllers, we developed tube-balloon logic circuitry, which consists of logic gates made from straws and balloons. Each tube-balloon logic device takes a novice five minutes to fabricate and costs $0.45. Tube-balloon logic devices can also operate at pressures of up to 200 kPa and oscillate at frequencies of up to 15 Hz. We configure the tube-balloon logic device as NOT-, NAND-, and NOR-gates and assemble them into a three-ring oscillator to demonstrate a vibrating sieve that separates sugar from rice. Because tube-balloon logic devices are low-cost, easy to fabricate, and their operating principle is simple, they are well suited for exploring fundamental concepts of fluidic control schemes while encouraging design inquiry for pneumatically driven soft robots. 
    more » « less
  6. "Biology is replete with sott mechanisms ot potential use tor ro­ botics. Here, we report that a soft, toroidal hydrostat can be used to perform three functions found in both living and engi­ neered systems: gripping, catching, and conveying. We demon­ strate a gripping mechanism that uses a tubular inversion to encapsulate objects within a crumpled elastic membrane under hy­ drostatic pressure. This mechanism produces gripping forces that depend predictably upon the geometric and materials properties of the system. We next demonstrate a catching mechanism akin to that of a chameleon's tongue: the elasticity of the membrane is used to power a catapulting inversion process (= 400 m/s2) to capture flying objects (e.g., a bouncing ball). Finally, we demon­ strate a conveying mechanism that passes objects through the cen­ ter of the toroidal tube (~1 cm/s) using a continuous inversion-aver­ sion process. The hybrid hard-soft mechanisms presented here can be applied toward the integration of soft functionality into robotic systems." 
    more » « less